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At the 1973 Particle Accelerator Conference held in 

San Francisco, the following problem was raised. 

The head-tail effect was discovered in the following 

machines: ADONE, ACO, CEA, SPEAR and NAL Booster. In all 

these machines only the zero-th mode of the instability, which 

involves the oscillations of the centre of mass of the beam, was 

noticed. The instability is usually compensated by cancelling 

the chromaticity (variation of the tune with momentum) of the 

machine. In some cases the sign of the chromaticity was also 

changed because by so doing it was thought the higher modes 

(which do not involve the motion of the center of mass of the beam) 

would become unstable. Nevertheless, the higher modes have never 

been observed. The question was: why? 

It was commented that, according to Pellegrini-Sands theory 182 , 

if the zeroth mode is stable the higher modes should be unstable 

and viceversa. 

We now believe that this statement is wrong. We believe also 

that it might be correct for small betatron phase advance across 
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the beam-bunch and for smooth, slow decaying wake field. Our 

concern was mostly about a wake field that rings or decays 

rather fast within a bunch. Thus, still adopting Pellegrini- 

Sands theory, we calculated the growth (or damping) rate of the 

head-tail instability: (1) in the presence of a high-frequency 

resonator, and (2) for a decaying wake field. Our calculations 

showed, indeed, that higher modes and zeroth mode can all be 

be stable (or unstable) at the same time. 

Analytic Calculations 

1. Let us make use of the notation used in ref. (1). The 

complex frequency shift due to a wake field p(t) for the mode 

number m is then given by 

y, ]'ii (-$)eimJ, d$ Awm = - - 
-IT 

(1) 

where 

m= 1 
-iw 

2woTs] e 
0 

p (T'-T) dt (2) 

and 

~'-7 = 2A sin &. 2 ~ cos ws t (3) 

for a bunch of particles with the same amplitude of synchrotron 

oscillation. 
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2. We shall assume that the wake field is originated by a 

cavity which resonates on a single mode. By making use of the 

notation used in Appendix B of ref. (2) we have, 

p(t) = 
e2vZo or2 
d2Lmoy ur2 + r2 

.--rt ,sin 0 
\ 

rt+ 

(4) 

where 

1 
\ 

- - cos wr t 
4Q2 

H(t) 

where m o is the mass of the particle at rest and moY the mass of 

the particle in motion. H (t) is the stepwise function. 

Let us write p(t) in a more condensed form 

p(t) = CBe -rt cos (w,t + g) H(t) 

e2vZ 
c= 0 

d2moy 

B= 
ur252 p-5 

g = arctg (4Q2) 

3. Observing that formally~it is 
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cos @ = 
ei$ + e-i@ 

2 
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and inserting (3) and (4) in (2), and (2) in Cl), we obtain 

Aom = - "; B \ eig F m( x - E - in) + 
16n w. 

+ emig Fm 
7 

(x + E - iq)) 
J 

=- NC P 
161T2wo m 

where i-T +$ 

Fm (2) = 
! i 

e-izsini$/cosi$ eimli) dude 

-T SL 
2 

and 

x = 2Aw i 
ocl' E = 2Aw r ' n = 2AT . 

4. In the Appendix of this paper it is proved that 

Fm (z) = Rm (2) - i Jm (z) (7) 

where 

Rm (z) = 2 

and 
r/2 

Jm (z) = 4~ (-llm 
! 

Ho (zcosl3) cos2m9dB 

‘0 

(5) 

(6) 

(8) 

(9) 
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where J m is the Bessel function of first kind and m-th order, 

and Ho is the Struve function of zeroth order. It is easily 

seen that 

Rm (2) = Rm C-2) , Jm (z) = -Jm (-2) 

and that 

Fm (2) = o for z = o and IsI + m 

except for m = o and s = o, in which case 

F. (z=o) = 27~~. 

5. In the case of small IsI we can expand (8) and (9) up 

to the first order term in s and use the following approximation 

Fm (2) '? 27r2 6mo + i G-, 1z1<<1 
4m -1 

(10) 

where 

r 
j” for mS0 

6 =< mo il for m=o 

ay inserting (10) in (5) we obtain for the growth rate 8,, which 

is the imaginary part of -AU,, 

8, = 
ANC< 

2~r’ Q2 a (4m2-1) 
(11) 

which is not in agreement with ref. (2). The difference is not 

only in a numerical factor but also in the sign. 
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Numerical Calculations 

In the previous section we have seen that for (x + E - in) 

small (and not necessarily for x small) the zeroth mode and 

the higher order modes have different stability cryterion. For 

large arguments, one has to calculate the frequency shift (5) 

with a computer. This is what we did by letting the computer 

calculate (8) and (9) by means of the following series 

expansions 3 

(- s2/4)k 
K=O k! (n+K) ! 

and 

Ho (2) = 1. 
.=- c-llK-l s2K-1 

IT Ei [(2K-1)!!]2 

and by calculating the intergrals of the form 

7112 

i 
COSTS-' 6 cos2m6 de 

0 

as shown in ref. (4). We had to limit our calculation to the 

first four modes (m = o, 1, 2, 3) and for x G 10, E < 12. For - - 

too large arguments and for too large modes the numerical 

calculation gets rather inaccurate and unreliable. 

Also, it is rather easy to prove that the growth rate 

change sign if x does too, thus we limited our calculation only 

to positive values of x. 
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Finally, we considered only the two extreme cases of 

very low Q (Q=l) and very high Q ((1 = m). The results of the 

calculation for Q = 1 are shown in Figures 1 to 4, and for 

Q=m in Figures 5 to 8. The imaginary part of Pm is plotted 

versus x for various resonating frequency (E) and modes. 

We show in Figures 9 and 10 the stability diagrams. Com- 

paring all the cases with the same Q (which forms a diagram) 

and the same x (a line of the diagram) we can have, at the 

glance, the idea of how all the modes under consideration 

behave all together. For each frequency we have four letters, 

the first refers to m = o, the second to m = 1 and so on. 

The letter 'Is" stays for stable, the letter 'u" for unstable. 

It is easily seen that, especially for Q = 1 and high 

frequency, all the modes own the same stability cryterion no 

matter how small x is. 

Fast Decaying Wake Field 

We considered, then, a fast, exponentially decaying wake 

field. The wake form is now 

p(t) = p, emrt H(t) (12) 

where p, and r are two constants. 

By inserting (3) and (12) in (21, and (2) in (11, we obtain 

Awm = - NPO 

8a2wo 
Fm (x-in) . (13) 
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From eq. (10) we derive the growth rate for small argument 

8, = 
2ANPoS 

.rr2a (4m2-1) 
(14) 

Again observe that this does not necessarily apply for 

small x, but for small Ix-ini. 

For large argument we calculated Fm(x-in) at the com- 

puter. The results of the calculation are shown in Figures 

11 to 14. In these figures the imaginary part of Fm is plotted 

versus x (positive) for several values of n. A stability 

diagram is also shown in Figure 15. From this we see that, again, 

no matter how small x is, the zeroth mode and the higher order 

mode have the same stability cryterion for large n, which is 

for wake fields which decay very fast compared to the bunch 

length. 
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From eq. (6) we have 

IT 7712 
Fm (2) = :m 11, cnc faeinl~lcns~l ddl CJ,‘, A cos... 

i. 
Y --- ‘-----r2, ---T, -T UY 7 

J 
-71 -n/2 

71 a/2 

+ sinm J, sin (zsinl$/cos$) d$ dJ, + 
-71 -n/2 

71 r/2 

+i - J sinm il, cos (zsinl$lcos$) de dJ, + 
-II -s/2 

:? a/2 

-i cosm $ sin (zsinl$lcos@) d$ d$ . 
-IT -IT/2 

The second and third integrals are identically zero, and 

we-are left with the first and the last one, which we can write, 

after the change of variable Q = 13 - 5 , 

Fm (2) = COB $ cos (zsinl$lsin8) de d$ + 
- 
-IT 0 

IT ll 

-i cosm J, sin (zsinl$lsinC) dB d$ 
77 0 



-lO- 

and, from ref. (5) 

FN-254 
0302 

Fm (z) = nf Jo (zsinj#l) cosm il, d$ + 
-II 

II 

-i 71 Ho (zsinl$l) cosm $ d$ . 
-IT 

With the change of variable $ = $ , we have 

Fm (z) = 4n J Jo (zsine) cos2m .$ d@ + 
0 

n/2 

-47i 1 ffb (zsine) cos2m $ d+ . 
0 

Finally, with the new variable c$' = L$ + s we have also 

Fm (z) = 47'r (-l.lm 
I 

Jo (zcose') cos2m~-$’ d$' + 
0 

-4ni (-l)m 
J 

Ho (zcos$') cos2m I$' a$'. 
0 

The first integral, according to ref. (6), is Rm (z), and 

the second integral is Jm (z). 
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